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Some problems related to the transition density u(t, z) of the diffusion on the Sierpinski gasket are
considered, based on recent rigorous results and detailed numerical calculations. The main contents
are an extension of Flory’s formula for the end-to-end distance exponent of self-avoiding walks on
the fractal spaces and evidence of the oscillatory behavior of u(t,z) on the Sierpinski gasket.
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In this paper we report our study on the transition
density u(t,z) of the diffusion and the random walk on
the Sierpinski gasket, based on recent rigorous results
and detailed numerical calculations. The main contents
are an extension of Flory’s formula for the end-to-end
distance exponent of self-avoiding walks on the fractal
spaces and evidence of the oscillatory behavior of u(t, x)
on the Sierpinski gasket.

Recently, rigorous justification of the (symmetric and
isotropic) diffusion on the Sierpinski gasket and analysis
of its behavior have appeared in mathematics literature
[1,2]. Among the results in these studies, we focus on the
transition density u(t,z), the density at point z at time
t > 0, for the diffusion starting at ¢t = 0 from the origin of
the Sierpinski gasket. In [2] u(t, ) is rigorously shown to
exist, and the following form of bound is proved to hold
for all t > 0 and at any point = on the Sierpinski gasket:

f(t,z;C1,C2) < u(t,z) < f(t,z;Cs,Cy), (1)

where C;’s are some positive constants independent of ¢
and z, and the function f is given by

f(t,z;C1,C2) = C1t~4/? exp{—Ca(|z|t~1/*)?7}
n=dy/(2dw—2). (2)

The exponents d,, and d, in (2) are the walk dimen-
sion and the spectral dimension, respectively, whose val-
ues for the Sierpinski gasket are d,, = log5/log2, and
d, = 2ds/d,, = 2log3/log5, where dy = log3/log2 is
the fractal dimension [3-5]. The specific form |z|t~1/dw
in (2) implies anomalous diffusion (|z(t)|?) ~ t?/9« (or
rather, this relation defines d,,). Note that the value of
7 in (2) cannot be determined from this relation alone.
Bounds of the form (1) with n as in (2) are mathemati-
cally proven to hold also for a wide class of finitely rami-
fied fractals [6] (with some generalizations, which we will
not deal with here), and even on some infinitely ramified
fractals such as the Sierpinski carpet [7]. The wide ap-
plicability of (2) suggests that we may take this formula
as one of the bases in the studies of u(t,z). We consider
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two problems related to u(t,z). One is the extension of
Flory’s formula for self-avoiding walks (SAW’s) to fractal
spaces, and the other is the oscillatory behavior of u(t, =)
on the Sierpinski gasket.

It is to be noted here that there is a rigorous anal-
ogy between diffusion and harmonic vibration [4], and
the behavior of u(t, z) carries information on the density
of eigenstates of the “Laplacian” and so forth. We ask
readers to see [8] for a recent overview of the dynamical
properties of fractal networks, and references therein for
numerous results on fractal vibrations.

Consider a SAW on a fractal with fractal dimension
ds and spectral dimension d,. The end-to-end distance
exponent v is defined by R(N) ~ N¥ (N > 1), where N
is the number of steps of a SAW and R(N) = (Jz(N)|)
is the average end-to-end distance of the N-step SAW.
According to the mean-field-type arguments for SAW’s,
Flory’s value vg [9,10] for the exponent v is obtained
by finding the solution R = Rp(NN), which attains the
minimum of the “free energy” —logu(N,R) + V(N, R)
for each N, where we wrote u(N, R) for an average of
the transition density u(N, z) of the simple random walk
over z with |z| & R, and V(NV, R) = N2?/R?s represents
the volume exclusion effects. vp is then determined by
Rp(N) ~ N¥F. The studies that derived (2) for finitely
ramified fractals start with an analysis of simple random
walks and then reach the diffusions by taking continuum
limits. Therefore the long time behavior (N > 1) of the
transition density u(N, z) for a random walk also satisfies
(1) with (2). We use the form (2) for u(N, R) to obtain

1+n/dy

it 1= /=2 @)

vr = vr(n) = 2

The argument holds for any network with definite frac-
tal dimension dy and walk dimension d,,. The value
n = d¢/d;, = d,/2 was proposed at times when the
form of (2) was not settled, resulting in a simpler formula
vr(dw/2) = 3/(df + dy,) [10,11]. In [10] it was pointed
out that there was no justification in this choice other
than simplicity, and that the problem of the choice of 5
remained open. A heuristic explanation of the rigorous
proof [2] for the value n = d,,/(2d,, — 2) is as follows.
Fix the step N and the distance R such that R =
|£] > N4 and consider walks of N steps that reach
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a point at distance R; i.e., look at walks going out-
wards quickly. Classify the random walk sample paths
by the scale rqg, such that for scale r larger (smaller)
than ro the random walker walks straight (walks ran-
domly; AN ~ Ardw). A walk specified by the scale
ro passes straight through R/r¢ blocks of scale r¢, by
definition. Since it takes steps of order 'rg“' to pass
through each block, we have N ~ (R/ro)rg“’, which im-
plies that the dominant contribution to the quick diffu-
sion specified by (IV, R) comes from the walks with ro ~
(N/R)Y/(dw=1)_ Each time the walker passes the block
straight through it loses probability by 1/4, because, at
each node, there are four possible directions (i.e., the four
outmost vertices of the two blocks connected to the node)
in which to go. The total decay of probability, which
gives an estimate of the transition density is u(V,R) ~
4~ (R/70) because the walker passes R/ro blocks straight
through. Using the estimate for r¢ given above, we have
—logpn(R) ~ (RN~1/4w)du/(du—1) Jog 4, which implies
N =dw/(2dy — 2).

The reason that (2) is to be used for Flory’s for-
mula can be seen from the above argument; compared
to random walks, the SAW is “pushed outwards” owing
to self-repulsion or volume exclusion effects. Therefore,
the dominant contribution to the SAW comes from those
walks that move quickly away. The argument given above
explains that the value = d,,/(2d,, — 2) is the conse-
quence of the contribution from walks that quickly move
away; hence, it is reasonable to use this form in deriving
Flory’s formula.

The explicit values of df and d,, are known for the
Sierpinski gasket and its natural d-dimensional general-
izations (dSG’s), constructed by a (d+ 1) simplex instead
of by a triangle. The values are dy = log(d + 1)/log 2
and d,, = log(d + 3)/log2 for dSG’s [3-5], with which
vr = VF(dw/(2dy — 2)) can be calculated from (3). For
2SG (= Sierpinski gasket) and 3SG, the values of vp
(0.8249... and 0.724588. . ., respectively) are to be com-
pared with the exact values of v, which are

v(2SG) =log2/log (7 — v/5)/2 = 0.79862... , 4
v(3SG) = 0.67402... . (4)

The value of ¥(3SG) has an exact expression similar to
that for ©(25G), but in place of integers 7 and 5 ap-
pear roots of a 14th order algebraic equation [12]. The
values in (4) have been known for some time [13] (see
also [10,14]), and have recently been proved rigorously in
[15,12]. Flory’s formula (3) is within a 3% and 8% preci-
sion from the exact values for 2SG and 3SG, respectively.
Flory’s formula is known to be numerically very good for
SAW'’s on Euclidean lattices (for a recent review of SAW’s
on Euclidean lattices, see [16]). The extended Flory’s for-
mula (3) that we have is not bad, but it is not very close
to the exact values compared to Euclidean cases. If we
put 7 = 1, the values become closer (in fact, they are
close to the best choice) to the exact results (0.06% and
3% deviation for 25G and 3SG, respectively). The choice
1 = dy/(2dy, — 2) has the soundest basis (1) and (2), but
the value is better for 2SG and 3SG with = 1. Devia-
tion of (3) from the rigorous and exact results (4) leads
our interest to detailed numerical studies of u(t, ).
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Two open problems are found in the literature con-
cerning the detailed structure of u(t,z). One problem is
the value of 7; the results given in [17] agree with (2),
while those in [18] claim the value n = d,,/2. The other
problem is the observation in [2,19] that there are “oscil-
lations” in u(t, z).

To perform numerical calculations, we regard u(t, z) as
the electric charge density of a point = at time ¢, and re-
formulate the problem in terms of the impedance circuits.
We consider a d-dimensional Sierpinski gasket dSG. The
corresponding electrical circuit has an impedance distri-
bution on the gasket, and also impedance between the
gasket and the ground. By symmetry and star-triangle
(Y-A) type relations, a unit block of the gasket (a sub-
circuit of d-dimensional simplex with side length 1) can
effectively be represented by a device with d + 1 termi-
nals, each connected by an impedance a(s) to the center
point of the simplex, to which the ground is connected
by an impedance b(s). s is the dual variable to ¢ in the
Laplace transform. The self-similarity of the diffusion
implies the scaling behavior B u(Lt,2z) = u(t,z) [1-5],
where we put L = d+3 = 2% and B = d+1 = 29¢. Using
the scaling behavior, the self-similarity of the gasket, and
the similarity among d + 1 terminals of a block simplex,
together with star-triangle-type relations, we find

(a(Ls) L/B, g(Ls)) = W(a(s), 9(5)) , ()

where g(s) = 2a(s)/b(s), and W (z,y) = (z(y + L)/(y +
B),y(y + L)). We also find g(0) = 0. ¢’(0) and a(0)
determine the normalization of u and t. We focus on the
normalization independent quantities such as exponents
and oscillations. By fixing ¢’(0) and a(0), the solution of
the functional equation (5) is determined uniquely. The
equation for g(s) is known as Schréder’s functional equa-
tion. The existence of the solution has been studied [20],
but its detailed behavior seems to be unknown.

We define two asymptotic functions
C(s) = st=%/2 nl'l'ngo(L/B)"a(L"s) and k(s) =

s~Ydw lim 27" Ing(L™s), for s > 0. These functions
n—oo

are periodic in log s with period log L, and hence can be
expanded in Fourier series:

C(s) =co+ Z Cn sin(27rn log; s + qbn) N
ot (6)
k(s) =ko+ Y knsin(2rnlogy s + ¢},).

n=1

We numerically obtained by double precision FORTRAN
calculations for d = 2, the Sierpinski gasket; c1/co =
1.21929438x 1075 and cz/c; = 3.68x10~, for C(s); and
ki/ko = 1.5264191 x 10~® and ky/k; = 5.6 x 10~7, for
k(s). The results show a strong hierarchy of coefficients,
such that the higher frequency components have expo-
nentially small values [c, = O(1075"), k, = O(107%")].
Note that we have small but nonzero numbers of O(10~°)
out of Eq. (5) with O(1) coefficients, which is potentially
an interesting phenomenon. We performed the numerical
calculations up to d = 10, and obtained qualitatively sim-
ilar behavior, with somewhat larger amplitudes of oscil-
lations for larger d. For a precision check, we performed
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the calculations for d = 1, corresponding to the diffu-
sion on a line, and obtained the correct constant values
C(s) = 2/2 and k(s) = 2'/2, within an error of 1014,
The peak values of k(s) are consistent with the numeri-
cally obtained values in [2].

We can calculate the Laplace transform (s, z) of the
density using the impedances. For the transition density
at the origin, we have i(s,0) = axo(s)/2, where ax(s) =
C(s) s%/%71 is the impedance corresponding to a simplex
of “infinite” size. Using (6), we can evaluate the inverse
Laplace transformation of #(s,0), term by term in the
Fourier series, using a change of contours. We have

oo
u(t,0) = N¢=9/2 [copo + z cnPn cos(2nnlogy t -¢n)] ,

n=1

with ¢, as in (6) and p, = |I'(274d, +
7 1Qni)|271/2[cosh(2Qn) — cos(wd,)]*/2 for n > 0, where

Q =2n%/InL. N is a normalization constant. Thus the
oscillation in C(s) explains that in u(t,0).

We parametrize u(t,z) = f(¢,z; C1(t),C2(t,z)) with
f as in (2), and consider the oscillations in C;’s. Us-
ing the values given below (6) for c,’s, we have, for
d=2,C) = td'/zu(t, 0) = Ci0 + C11cos(2mlogy t —
Y1) + -+, with C11/C1o = 8.096478 x 10~3. We per-
formed a numerical Laplace inverse transformation of
i(s,0) and obtained a consistent value. The Laplace
transform of the density u(t,1) at a vertex of a unit
simplex is given by @(s,1)/4(s,0) = [1 + g(s)/(2d)][1 —
a(s)/axc(8)] — a(s)/[daco(s)]. Ca2(t) = C2(t,1) is then
given by Cy(t) = t?"/9w log[u(t,0)/u(t,1)]. To calculate
the inverse Laplace transforms for small ¢ (t < 1072), we
find s = 8o > 0, which gives a minimum of (s, 1) exp(st)
(as we do in the steepest descent method of complex con-
tour integration), and numerically evaluate the contour
integration with the contour Re(s) = so. For larger ¢t we
use the contour Re(s) = 1/t. (The details of the numer-
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ical calculations will be reported elsewhere.) Figures 1
and 2 show C3(t) for d = 2 as a function of Int. Fig-
ure 2 shows the small oscillation [O(1078) in amplitude]
in Cz(t) for very small t. We performed similar calcula-
tions for the exactly solvable d = 1 case, and checked that
the error in the range of Fig. 2 is O(107!!). Small ¢ corre-
sponds to large s in the Laplace transform, where we have
an asymptotic formula (s, 1)/i(s, 0) ~ exp[—s'/%wk(s)].
Thus the oscillation in k(s) explains that in C,(t) for very
small ¢.-

From Fig. 1 we see that (besides the tiny oscillation)
C2(t) is flat for small t. This is consistent with the fact [2]
that the value n = d,,/(2d,, — 2) explains the asymptotic
behavior of u(t,z) as t — 0. For larger t, Ca(t) is de-
creasing with a significant size of oscillation. If we try to
explain this decrease in terms of “effective (dynamical)”
changes in the value of 7, i.e., keep C; constant and let
7 change as ) = 7es5(t), we see that the effective value

Ness(t) increases as t is increased. Our data are in favor
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of the argument in [17] that 7.ss(t) = d., /2 [18] may be
effectively good for t = O(1), while = d,,/(2d,, — 2) is
good for t < 1. Note also that dy, /(2dw —2) < 1 < d,,/2,
where 7 = 1 gives good vr(n). The oscillatory behavior
of the data prevents us from obtaining precise results on
the value of 7.s¢. In contrast to the clarity in the mean-
ing of the value = d,,/(2d,, — 2), the theoretical basis
for neyy is still unclear, which has to be settled before we
can be conclusive about its value and implications.

The authors would like to thank Professor M. T. Bar-
low and Professor S. Kusuoka for helpful discussions, Pro-
fessor N. Yanagihara for bringing to our attention refer-
ences on Schroder’s functional equations, and Professor
T. Nakayama for sending his review article. The research
of T. Hattori is supported in part by a Grant-in-Aid for
General Scientific Research from the Ministry of Educa-
tion, Science and Culture.

[1] S. Kusuoka, in Proceedings of Taniguchi Symposium,
Katata, 1985 (Kinokuniya—North-Holland, Amsterdam,
1987); S. Goldstein, IMA Math. Appl. 8, 121 (1987).

[2] M. T. Barlow and E. A. Perkins, Probab. Theory Relat.
Fields 79, 543 (1988).

[3] B. B. Mandelbrot, The Fractal Geometry of Nature (Free-
man, San Francisco, 1982); Y. Gefen, A. Aharony, B. B.
Mandelbrot, and S. Kirkpatrick, Phys. Rev. Lett. 47,
1771 (1981).

(4] S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43,
L625 (1982); Y. Gefen, A. Aharony, and S. Alexander,
Phys. Rev. Lett. 50, 77 (1983); R. Rammal and G.
Toulouse, J. Phys. (Paris) Lett. 44, L13 (1983).

[5] K. Hattori, T. Hattori, and H. Watanabe, Prog. Theor.

Phys. Suppl. 92, 108 (1987); Probab. Theory Relat.

Fields 100, 85 (1994); S. Havlin and D. Ben-Avraham,

Adv. Phys. 36, 695 (1987).

T. Lindstrgm, Mem. Am. Math. Soc. 420, 1 (1990); B.

M. Hambly, Probab. Theory Relat. Fields 94, 1 (1992);

T. Kumagai, ibid. 96, 205 (1993); P. J. Fitzsimmons, B.

M. Hambly, and T. Kumagai, Commun. Math. Phys. (to

be published).

[7] M. T. Barlow and R. Bass, Ann. Inst. Henri Poincaré 25,
225 (1989); Probab. Theory Relat. Fields 91, 307 (1992);
Bull. Am. Math. Soc. 29, 208 (1993); S. Kusuoka, and X.
Y. Zhou, Probab. Theory Relat. Fields 93, 169 (1992).

[8] T. Nakayama, K. Yakubo, and R. L. Orbach, Rev. Mod.
Phys. 66, 381 (1994).

(6

[9] P. J. Flory, Principles of Polymer Chemistry (Cornell
University Press, Ithaca, NY, 1953); P.-G. de Gennes,
Scaling Concepts in Polymer Physics (Cornell University
Press, Ithaca, NY, 1979).

[10] R. Rammal, G. Toulouse, and J. Vannimenus, J. Phys.
(Paris) 45, 389 (1984).

[11] M. Sahimi, J. Phys. A 17, L379 (1984); S. Elezovi¢, M.
Knezevi¢, and S. Milosevié, ibid. 20, 1215 (1987).

[12] K. Hattori, T. Hattori, and S. Kusuoka, Publ. Res. Inst.
Math. Sci. 29, 455 (1993).

(13] D. Dhar, J. Math. Phys. 19, 5 (1978).

(14] D. Ben-Avraham and S. Havlin, Phys. Rev. A 29, 2309
(1984); D. J. Klein and W. A. Seiz, J. Phys. (Paris) Lett.
45, L241 (1984).

[15] K. Hattori, T. Hattori, and S. Kusuoka, Probab. Theory
Relat. Fields 84, 1 (1990); T. Hattori and S. Kusuoka,
ibid. 93, 273 (1992).

[16] N. Madras and G. Slade,
(Birkh&user, Boston, 1993).

[17] R. A. Guyer, Phys. Rev. A 32, 2324 (1985).

(18] J. R. Banaver and J. Willemsen, Phys. Rev. B 30, 6778
(1984); B. O’Shaughnessy and 1. Procaccia, Phys. Rev.
A 32, 3073 (1985).

[19] M. Fukushima and T. Shima, J. Potential Analysis 1, 1
(1992).

[20] C. Siegel and J. Moser, Lectures on Celestial Mechanics
(Springer, Berlin, 1971).

The Self-Avoiding Walk



